This week on the show: Are we ready to create digital models of the human brain?
Last month, Stanford researcher Andreas Tolias and colleagues created a "digital twin" of the mouse visual cortex. The researchers used the same foundation model approach that powers ChatGPT, but instead of training the model on text, the team trained in on brain activity recorded while mice watched action movies. The result? A digital model that can predict how neurons would respond to entirely new visual inputs.
This landmark study is a preview of the unprecedented research possibilities made possible by foundation models of the brain—models which replicate the fundamental algorithms of brain activity, but can be studied with complete control and replicated across hundreds of laboratories.
But it raises a profound question: Are we ready to create digital models of the human brain?
This week we talk with Wu Tsai Neuro Faculty Scholar Dan Yamins, who has been exploring just this question with a broad range of Stanford colleagues and collaborators. We talk about what such human brain simulations might look like, how they would work, and what they might teach us about the fundamental algorithms of perception and cognition.
Learn more
AI models of the brain could serve as 'digital twins' in research (Stanford Medicine, 2025)
An Advance in Brain Research That Was Once Considered Impossible (New York Times, 2025)
The co-evolution of neuroscience and AI (Wu Tsai Neuro, 2024)
Neuroscientists use AI to simulate how the brain makes sense of the visual world (Wu Tsai Neuro, 2024)
How Artificial Neural Networks Help Us Understand Neural Networks in the Human Brain (Stanford Institute for Human-Centered AI (HAI), 2021)
Related research
A Task-Optimized Neural Network Replicates Human Auditory Behavior... (PNAS, 2014)
Vector-based navigation using grid-like representations in artificial agents (Nature, 2018)
The neural architecture of language: Integrative modeling converges on predictive processing (PNAS, 2021)
Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations... (Neuron, 2021)
We want to hear from your neurons! Email us at at neuronspodcast@stanford.edu.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
If you spend any time chatting with a modern AI chatbot, you've probably been amazed at just how human it sounds, how much it feels like you're talking to a real person. Much ink has been spilled explaining how these systems are not actually conversing, not actually understanding — they're statistical algorithms trained to predict the next likely word.
But today on the show, let's flip our perspective on this. What if instead of thinking about how these algorithms are not like the human brain, we talked about how similar they are? What if we could use these large language models to help us understand how our own brains process language to extract meaning?
There's no one better positioned to take us through this than returning guest Laura Gwilliams, a faculty scholar at the Wu Tsai Neurosciences Institute and Stanford Data Science Institute, and a member of the department of psychology here at Stanford.
Learn more:
Gwilliams' Laboratory of Speech Neuroscience
Fireside chat on AI and Neuroscience at Wu Tsai Neuro's 2024 Symposium (video)
The co-evolution of neuroscience and AI (Wu Tsai Neuro, 2024)
How we understand each other (From Our Neurons to Yours, 2023)
Q&A: On the frontiers of speech science (Wu Tsai Neuro, 2023)
Computational Architecture of Speech Comprehension in the Human Brain (Annual Review of Linguistics, 2025)
Hierarchical dynamic coding coordinates speech comprehension in the human brain (PMC Preprint, 2025)
Behind the Scenes segment:
By re-creating neural pathway in dish, Sergiu Pasca's research may speed pain treatment (Stanford Medicine, 2025)
Bridging nature and nurture: The brain's flexible foundation from birth (Wu Tsai Neuro, 2025)
Get in touch
We want to hear from your neurons! Email us at at neuronspodcast@stanford.edu if you'd be willing to help out with some listener research, and we'll be in touch with some follow-up questions.
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with sound design by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
We've talked about glia and sleep. We've talked about glia and neuroinflammation. We've talked about glia in the brain fog that can accompany COVID or chemotherapy. We've talked about the brain's quiet majority of non–neuronal cells in so many different contexts that it felt like it was high time for us to take a step back and look at the bigger picture. After all, glia science was founded here at Stanford in the lab of the late, great Ben Barres.
No one is better suited to take us through this history and lead us to the frontiers of the field than today's guest, Brad Zuchero.
A former Barres lab postdoc, and now an emerging leader in this field in his own right, Brad gives us an overview of our growing understanding of the various different kinds of glia and their roles in brain function, and shares the exciting discoveries emerging from his lab — including growing evidence of a role for myelin in Alzheimers disease.
Learn More
Get in touch
We want to hear from your neurons! Email us at at neuronspodcast@stanford.edu if you'd be willing to help out with some listener research, and we'll be in touch with some follow-up questions.
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute and supported in part by the Knight Initiative for Brain Resilience at Wu Tsai Neuro.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
As we gain a better understanding of how misfiring brain circuits lead to mental health conditions, we'd like to be able to go in and nudge those circuits back into balance. But this is hard — literally — because the brain is encased in this thick bony skull. Plus, often the problem you want to target is buried deep in the middle of a maze of delicate brain tissue you need to preserve.
Today we're going to be talking with neuroscientists who aim to solve this problem with sound. And not just any sound: ultrasound.
Kim Butts Pauly and Raag Airan from the Stanford Department of Radiology are developing ultrasound technology in a couple of different ways to essentially reach into the brain to treat brain disorders that are otherwise hard to access. These uses of ultrasound haven't yet reached the clinic, but could be entering clinical testing in people in the next few years.
Mentioned on the Show
Get in touch
We want to hear from your neurons! Email us at at neuronspodcast@stanford.edu if you'd be willing to help out with some listener research, and we'll be in touch with some follow-up questions.
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute and supported in part by the Knight Initiative for Brain Resilience at Wu Tsai Neuro.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
We're kicking off our new season with a deep dive into one of neuroscience's most fascinating mysteries: sleep. This unconscious third of our lives isn't just about rest – it's absolutely critical for brain health, memory consolidation, and overall well-being. But here's where it gets intriguing: recent research suggests that increased napping as we age might be an early warning sign of Alzheimer's disease.
To unpack this complex relationship, we're thrilled to welcome back Erin Gibson, assistant professor of psychiatry at Stanford School of Medicine and Wu Tsai Neuro affiliate.
We'll explore whether age-related sleep changes are potential contributors to brain degeneration or valuable early indicators of otherwise invisible brain disorders, possibly opening doors for early intervention.
We'll also learn about Gibson's research, supported by the Knight Initiative for Brain Resilience at Wu Tsai Neuro, which investigates how myelin—the insulation of our nerve cells—could be a key missing link in understanding the relationship between sleep and brain health.
Join us for an enlightening discussion that might just change how you think about your nightly slumber and its profound impact on long-term cognitive function.
Mentioned on the Show
Related Episodes
Get in touch
We want to hear from your neurons! Email us at at neuronspodcast@stanford.edu if you'd be willing to help out with some listener research, and we'll be in touch with some follow-up questions.
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker and research assistance by G Kumar. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute and supported in part by the
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Today, we are speaking with the one and only Robert Sapolsky, a Stanford neurobiologist, a MacArthur "Genius", and best-selling author of books exploring the nature of stress, social behavior, and — as he puts it — "the biology of the human predicament."
In his latest book, Determined, Sapolsky assertively lays out his vision of a world without free will — a world where as much as we feel like we're making decisions, the reality is that our choices are completely determined by biological and environmental factors outside of our control.
Before we get into it, it's worth saying that where this is heading, the reason to care about this question is that Sapolsky's argument has profound moral implications for our understanding of justice, personal responsibility, and whether any of us deserve to be judged or praised for our actions.
Mentioned on the Show
Related Episodes
Get in touch
We're doing some listener research and we want to hear from your neurons! Email us at at neuronspodcast@stanford.edu if you'd be willing to help out, and we'll be in touch with some follow-up questions.
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Join us as we dive back into the world of psychedelic medicine with anesthesiologists Boris Heifets and Theresa Lii, who share intriguing new data that sheds light on how ketamine and placebo effects may interact in treating depression.
We explore provocative questions like: How much of ketamine's antidepressant effect comes from the drug itself versus the excitement of being in a psychedelics trial? What do we know about how placebo actually works in the brain? And should we view the placebo effect as a feature rather than a bug in psychiatric treatment?
Join us as we examine the complex interplay between psychoactive drugs, the brain's own opioid system, and the healing power of hope in mental health care.
Related research
Related episodes
Related news
Get in touch
We're doing some listener research and we want to hear from your neurons! Email us at at neuronspodcast@stanford.edu if you'd be willing to help out, and we'll be in touch with some follow-up questions.
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nichola
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Today, we are going back into the archives for one of my favorite episodes: We are talking to neuroscientist, entrepreneur, and best-selling author, David Eagleman. We're talking about synaesthesia — and if you don't know what that is, you're about to find out.
Special Note
We are beyond thrilled that From Our Neurons to Yours has won a 2024 Signal Award in the Science Podcast category. It's a big honor — thanks to everyone who voted!
---
Imagine Thursday. Does Thursday have a color? What about the sound of rain — does that sound taste like chocolate? Or does the sound of a saxophone feel triangular to you?
For about 3% of the population, the sharp lines between our senses blend together. Textures may have tastes, sounds, shapes, numbers may have colors. This sensory crosstalk is called synesthesia, and it's not a disorder, just a different way of experiencing the world.
To learn about the neuroscience behind this fascinating phenomenon and what it tells us about how our brains perceive the world, we were fortunate enough to speak with David Eagleman, a neuroscientist, author, and entrepreneur here at Stanford who has long been fascinated by synesthesia and what it means about how our perceptions shape our reality.
Links
Get in touch
We're doing some listener research and we want to hear from your neurons! Email us at at neuronspodcast@stanford.edu if you'd be willing to help out, and we'll be in touch with some follow-up questions.
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Earlier this year, President Obama's signature BRAIN Initiative, which has powered advances in neuroscience for the past 10 years, had its budget slashed by 40%.
Over the past decade, the BRAIN Initiative made roughly $4 billion in targeted investments in more than 1500 research projects across the country and has dramatically accelerated progress tackling fundamental challenges in neuroscience. As we head into the next federal budget cycle, the future of the initiative remains uncertain.
Today we take stock of how the BRAIN Initiative transformed neuroscience over the past 10 years, and what the outlook is for the future of the field.
To give us an unparalleled behind the scenes view, we are fortunate to have Bill Newsome with us on the show. A world renowned expert in the brain mechanisms of visual perception and decision-making, Bill co-chaired the original BRAIN Initiative planning committee in 2013 (the same year he became the founding director of the Wu Tsai Neurosciences Institute here at Stanford). Don't miss this conversation!
Learn More
Get in touch
We're doing some listener research and we want to hear from your neurons! Email us at at neuronspodcast@stanford.edu if you'd be willing to help out, and we'll be in touch with some follow-up questions.
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Given the widespread legalization of cannabis for medical and recreational uses, you'd think we'd have a better understanding of how it works. But ask a neuroscientist exactly how cannabinoid compounds like THC and CBD alter our perceptions or lead to potential medical benefits, and you'll soon learn just how little we know.
We know that these molecules hijack an ancient signaling system in the brain called the "endocannabinoid" system (translation: the "cannabinoids within"). These somewhat exotic signaling molecules (made of fatty lipids and traveling "backwards" compared to other transmitters) have been deeply mysterious until recently, when new tools made it possible to visualize their activity directly in the brain.
So what is the "day job" of the endocannabinoid system — and how does it connect to the dramatic highs that come with taking THC or the medical benefits of CBD?
To unpack all this, we're talking this week with neuroscientist Ivan Soltesz, the James Doty Professor of Neurosurgery and Neuroscience at Stanford, and a leading expert on the endocannabinoid system.
Learn More
Vote for us!
We are a finalist for a prestigious Signal Award for Best Science Podcast of 2024! Share your love for the show by voting for us in the Listener's Choice category by October 17. Thanks in advance!
Get in touch:
We're doing some listener research and we want to hear from your neurons! Email us at at neuronspodcast@stanford.edu if you'd be willing to help out, and we'll be in touch with some follow-up questions.
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Today we are re-releasing an episode we did last year with Stanford neurobiologist Lisa Giocomo exploring the intersection of memory, navigation and the boundaries we create between ourselves and the world around us.
This episode was inspired by the idea of memory palaces. The idea is simple: Take a place you're very familiar with, say the house you grew up in, and place information you want to remember in different locations within that space. When it's time to remember those things, you can mentally walk through that space and retrieve those items.
This ancient technique reveals something very fundamental about how our brains work. It turns out that the same parts of the brain are responsible both for memory and for navigating through the world.
Scientists are learning more and more about these systems and the connections between them, and it's revealing surprising insights about how we build the narrative of our lives, how we turn our environments into an internal model of who we are, and where we fit into the world.
Join us to learn more about the neuroscience of space and memory.
Before we get into this week’s episode, we have a favor to ask. We're working to make this show even better, and we want to hear from you. We're in the process of gathering listener input and feedback. If you'd be willing to help out, send us a short note and we'll be in touch. As always, we are at neuronspodcast@stanford.edu
Learn more:
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
In the past few years, Big Pharma has released not one, but three new treatments for Alzheimer’s disease.
Aducanemab (2021), Lecanemab (2023), and Donanemab (2024), are the first treatments to effectively clear the brain of amyloid plaques — the sticky protein clumps whose build-up in the brain has defined the disease for decades. The problem? They may not help patients at all.
Today’s guest, Stanford neurologist Mike Greicius, considers the new amyloid-clearing drugs a major disappointment — and worse, says they likely do more harm than good for patients.
Despite this critique, Greicius, thinks that the next few years will be an exciting time for novel Alzheimer’s therapies, as growing biological understanding of Alzheimer’s risk and resilience bear fruit with promising new approaches to treatment.
Learn More:
Greicius is the Iqbal Farrukh and Asad Jamal Professor of Neurology and Neurological Sciences at Stanford Medicine, and a member of the Knight Initiative for Brain Resilience and Alzheimer's Disease Research Center at Stanford University.
Amyloid Drug Skepticism:
Alzheimer's Genetics Research:
Episode Credits
This episode was produced by Michael Osborne, with production assistance by Morgan Honaker, and hosted by Nicholas Weiler. Art by Aimee Garza.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Getting help for depression can be like purgatory. Setting aside for a moment the stigma and other barriers to seeking treatment in the first place, finding the right combination of medication and/or therapy can be a months- or years-long process of trial and error. And for about one third of people, nothing seems to work.
Today we're talking with Dr. Leanne Williams, the founding director of the Stanford Center for Precision Mental Health and Wellness and Vincent V.C. Woo Professor in the Stanford Department of Psychiatry and Behavioral Sciences.
Williams and her team have recently used brain imaging and machine learning techniques to identify six distinct "biotypes" of depression — each of which may require a different approach to treatment. Beyond setting the stage for more targeted therapies, better understanding the biology behind the disease could finally cut through the stigma of one of the world's most common brain disorders.
Learn more
Episode Credits
This episode was produced by Michael Osborne, with production assistance by Morgan Honaker, and hosted by Nicholas Weiler. Art by Aimee Garza.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Today, we're talking with Stanford neuro-oncologist, Michelle Monje. This is actually the third time we've had Michelle on the show, in part because she's been a pioneer of three exciting frontiers in neuroscience — so far!
This week, we're going to talk about cancer neuroscience. Michelle founded this new field with her discovery that deadly brain tumors not only link up physically with the healthy brain tissue surrounding them, but the cancers actually need the brain's electrical activity to grow and spread.
It turns out that many cancers — not only in the brain — depend on nervous system innervation for their survival. Understanding this dependent relationship better may present an exciting new line of attack for oncology.
Join us to learn more!
News coverage
Relevant Publications
Review Articles
Episode Credits
This episode was produced by Michael Osborne, with production assistance by Morgan Honaker, and hosted by Nicholas Weiler. Art by Aimee Garza.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
This week on From Our Neurons to Yours, we're talking about using new techniques for growing human brain tissue in the lab to solve a rare neurological disorder.
Host Nicholas Weiler sits down with Sergiu Pasca an innovative Stanford scientist who has developed groundbreaking technologies to grow human brain tissue in the lab, creating "organoids" and "assembloids" that model brain disorders like autism and schizophrenia.
Pasca describes the process of turning patient skin cells into embryo-like stem cells and then into functional brain cells that can live and develop for over two years, and even be transplanted into rat brains to study their growth and development.
It may sound like science fiction, but these techniques represent a major step toward understanding and treating complex neurological conditions such as Timothy syndrome, a rare genetic disorder whose biology Pasca has spent the past 15 years unraveling.
Join us for fascinating glimpse into the future of developmental neuroscience and potential for new therapies for our remarkable self-assembling brains.
Learn more
Episode Credits
This episode was produced by Michael Osborne, with production assistance by Morgan Honaker, and hosted by Nicholas Weiler. Art by Aimee Garza.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Today, we're going to talk about virtual reality and how it could be used to treat depression.
We're talking with psychiatrist Kim Bullock, the founding director of Stanford's Neurobehavioral Clinic and Virtual Reality & Immersive Technologies (VRIT) program.
Dr. Bullock — a physician certified in Neuropsychiatry, Psychiatry, and Lifestyle Medicine — calls herself a "radical behaviorist." Like other practitioners of cognitive behavioral therapy (CBT), she sees the troublesome thoughts and emotional states of many psychiatric disorders as just another form of behavior, which can be reshaped through self awareness and practice — much like you might work at avoiding junk food or not biting your nails.
Of course, one of the biggest challenges is the practice part. It's no easy task for patients to practice experiencing the world in a more positive, healthy way. This is why Bullock is eager for practitioners of CBT and related forms of psychotherapy to embrace virtual reality technologies — which enable psychiatrists to prescribe precisely calibrated "experiences" to treat cognitive & behavioral disorders.
We started by discussing early results from a clinical trial for a virtual reality-enhanced intervention major depressive disorder, which Dr. Bullock recently launched with support from the Wu Tsai Neurosciences Institute Neuroscience:Translate program.
Join us to learn more about how VR is transforming the world of psychotherapy!
Learn More
Episode Credits
This episode was produced by Michael Osborne, with production assistance by Morgan Honaker, and hosted by Nicholas Weiler. Art by Aimee Garza.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
The skin is full of contradictions. It’s soft and sensitive, but also tough and resilient, even self-healing. It’s both the barrier that protects us from infections and our most intimate connection with the outside world.
Today’s guest, Zhenan Bao, has spent the last two decades reverse engineering the skin’s many remarkable properties in order to create wearable electronics that are just as soft, flexible, and versatile as the skin itself.
Bao envisions a world where stick-on devices could help heal injuries, manage anxiety, and even enhance our perceptions, and soft, implanted devices could give neurosciences new insights into the workings of the body and brain.
In today’s episode, we talk about what makes the skin such an intriguing problem for an engineer like Bao; some of the many applications of her technology for medicine, neuroscience, and mental health; and its potential to enhance or extend our perceptions.
Bao is K.K. Lee Professor of Chemical Engineering at Stanford and founding director of eWEAR — the Stanford Wearable Electronics Initiative.
Learn More
Stanford Wearable Electronics Initiative (eWEAR)
Advancing toward wearable, stretchable electronics | Stanford News (2024)
Soft ‘e-skin’ that talks to the brain | Stanford News (2023)
The Science of Skin | STANFORD magazine (2023)
Skin Inspired Electronics: Changing the Future of Electronics with Zhenan Bao (2023)
Dr. Zhenan Bao Keynote - Stanford Center for Precision Mental Health & Wellness Symposium (2022)
Episode Credits
This episode was produced by Michael Osborne, with production assistance by Morgan Honaker, and hosted by Nicholas Weiler. Art by Aimee Garza.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
This week, we're diving into recent research that sheds light on a new form of brain plasticity involving changes in the insulation of nerve fibers — called myelin. It turns out that myelin plasticity is implicated in a number of serious conditions, from epilepsy to drug abuse and addiction.
We're excited to bring back two previous guests on the show to share their insights on this previously unknown form of plasticity: Stanford psychiatry professor Rob Malenka (S1 E1 - Psychedelics and Empathy), a pioneer in the study of synaptic plasticity and addiction, and neuro-oncologist Michelle Monje (S1 E12 - Brain Fog), who made some of the very first observations of myelin plasticity in the brain, essentially founding this field.
Together, they discuss their recent findings on the role of myelin plasticity in opioid addiction and its implications for understanding addictive behaviors.
Get ready to nerd out as we uncover a new angle on our brain's remarkable capacity for change.
Learn More
Myelination in the brain may be key to ‘learning’ opioid addiction | Stanford Medicine (2024)
Adaptive and maladaptive myelination in health and disease | Nature Reviews Neurology (2022)
Brain plasticity promotes worsening of epileptic seizures, study finds | Stanford Medicine (2022)
The Brain Learns in Unexpected Ways | Scientific American (2020)
Brain boosting: It's not just grey matter that matters | New Scientist (2015)
Neural activity promotes brain plasticity through myelin growth, researchers find | News Center | Stanford Medicine (2014)
Episode Credits
This episode was produced by Michael Osborne, with production assistance by Morgan Honaker, and hosted by Nicholas Weiler. Art by Aimee Garza.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
-- We're re-releasing our conversation with Carla Shatz, one of our favorites from the archive, which comes up all the time on the show in the context of brain plasticity and aging. Enjoy, and see you next time! -NW --
When we're kids, our brains are amazing at learning. We absorb information from the outside world with ease, and we can adapt to anything. But as we age, our brains become a little more fixed. Our brain circuits become a little less flexible.
You may have heard of a concept called neuroplasticity, our brain's ability to change or rewire itself. This is of course central to learning and memory, but it's also important for understanding a surprisingly wide array of medical conditions, including things like epilepsy, depression, even Alzheimer's disease.
Today's guest, Carla Shatz, is a pioneer in understanding how our brains are sculpted by our experiences. She's credited with coining the phrase neurons that fire together, wire together. Her work over the past 40 years is foundational to how we understand the brain today.
So I was excited to talk to Shatz about our brain's capacity for change, and I started off by asking about this sort of simple question, why exactly do we have this learning superpower as kids to do things like pick up languages and why does it go away?
Shatz is Sapp Family Provostial Professor of Biology and of Neurobiology and the Catherine Holman Johnson director of Stanford Bio-X.
Learn More
Episode Credits
This episode was produced by Webby award-winning producer Michael Osborne, with production assistance by Morgan Honaker, and hosted by Nicholas Weiler. Art by Aimee Garza.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Hi everyone — quick programming announcement. As we head into summer, we'll be moving to an every-other-week cadence as we prepare more conversations from the frontiers of neuroscience. I'm very excited about what we're working on for you, so stay tuned!
In the meantime, we'd love to hear from you! Email us at neuronspodcast@stanford.edu with your thoughts, praise, critiques, or just to say hello.
That's all for now. See you next time!
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
The powerful new generation of AI tools that has come out over the past few years — DALL-E, ChatGPT, Claude, Gemini, and the rest — have blown away our old ideas about what AI can do and raised questions about what it means for computers to start acting... intelligent?
This week, we ask what the rise of these systems might teach us about our own biological intelligence — and vice versa. What does modern neuroscience have to say about how AI could become as flexible, efficient, and resilient as the human brain.
Few people are better positioned to speak to the intersection of neuroscience and AI than today's guest: Surya Ganguli.
Ganguli's lab produced some of the first diffusion models — which are at the foundation of today's AI revolution — and is now working to understand how complex emergent properties arise from biological and artificial neural networks.
Ganguli is a member of the Neuroscience Theory Center at the Wu Tsai Neurosciences Institute, a Senior Fellow at Stanford's Institute for Human-Centered Artificial Intelligence (HAI), and an associate professor in Stanford's Department of Applied Physics.
Further Reading
Visit us!
Want to learn more about AI and Neuroscience? Join us at Wu Tsai Neuro's annual symposium on October 17, 2024, which will showcase the frontiers of biological and artificial intelligence research. (More details coming soon!)
Episode credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
At some point in our lives, we all struggle with memory — learning a new name, remembering that book you were reading just yesterday or that word on the tip of your tongue.
So what can neuroscience teach us about why we remember, why we forget, and how we might even improve our memories?
To answer this question, I spoke with neuroscientist Anthony Wagner, a memory expert in Stanford's Department of Psychology.
Learn More
Wagner lab website
Stress thwarts our ability to plan ahead by disrupting how we use memory, Stanford study finds (Stanford News 2020)
Stanford researchers link poor memory to attention lapses and media multitasking (Stanford News, 2020)
Episode credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Today, we're going to talk about how psychedelics alter our perception of reality and what that says about... reality!
Welcome to part two of our conversation with Stanford anesthesiologist and psychedelics researcher Boris Heifets!
Last time, we talked with Boris about the question of why psychedelics help people with mental health disorders.
This week, we're going to dive into a different question, which is to explore how psychedelics work in the brain. How are they able to alter something as fundamental as our perceptions of reality — and could understanding these effects teach us about the nature of our everyday perceptions?
Learn more:
Episode credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
Psychedelics are a hot topic in psychiatry today. They’re producing dramatic reversals for patients with severe depression, PTSD, and other mental health conditions. But scientists still have fundamental questions about why these drugs are so effective.
For example, is the "trip" even necessary? Some think it is not and are working to design drugs with similar brain chemistry but no psychoactive effects — “Taking the trip out of the drug.”
Others suspect that many of the benefits of psychedelics can be attributed to hype and expectation: People expect to get better, so they do.
Normally scientists control for placebo using a blinded study where patients don't know if they're getting the real treatment or a sugar pill. But how are you going to do this with mind-altering substances? Patients are probably going to figure out pretty quickly whether they got a sugar cube with or without LSD.
Today's guest, Stanford anesthesiologist Boris Heifets, has come up with a particularly clever strategy to tease apart the psychedelic experience, biochemistry, hype and placebo.
Listen for the whole story!
Learn more:
Depression, ketamine & anesthesia:
Anesthetic dreams and trauma recovery:
Related episodes:
Episode credits
This episode was produced by Michael Osbor
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.
This week on From Our Neurons to Yours, we're talking about the neuroscience of climate change with neuroeconomist Nik Sawe.
If you follow the science or the news, you know how big of a risk climate change is. Storms, coastal flooding, heat waves, extinctions, mass migration — the list goes on.
But — as you can probably also appreciate — it’s really hard to properly perceive that risk. It’s much easier to focus on today’s emergency, this week’s looming deadline, this quarter’s economic forecast — where the risks are objectively much smaller, but feel more pressing.
This is where neuroscience comes in: Why are our brains so bad at perceiving this existential, long-term risk to our society and our planet? And are there ways we could work with our brains' limitations to improve our decision-making around environmental issues and the future more broadly?
To answer this question, we spoke with Nik Sawe, a neuro-economist who uses brain imaging to study environmental decision making in the lab of Brian Knutson in the Stanford Department of Psychology. Nik is also a policy analyst at the think tank Energy Innovation, where he is working on policy avenues to reduce carbon emissions in the industrial sector.
References
Episode Credits
This episode was produced by Michael Osborne at 14th Street Studios, with production assistance by Morgan Honaker. Our logo is by Aimee Garza. The show is hosted by Nicholas Weiler at Stanford's Wu Tsai Neurosciences Institute and the Knight Initiative for Brain Resilience.
Thanks for listening! If you're enjoying our show, please take a moment to give us a review on your podcast app of choice and share this episode with your friends. That's how we grow as a show and bring the stories of the frontiers of neuroscience to a wider audience.
Learn more about the Wu Tsai Neurosciences Institute at Stanford and follow us on Twitter, Facebook, and LinkedIn.