Eva Steinly's Podcast Podcast Artwork Image
Eva Steinly's Podcast
Why Physicists Are Saying Consciousness Is A State Of Matter, Like a Solid, A Liquid Or A Gas
November 22, 2018 Megan ST

A new way of thinking about consciousness is sweeping through science like wildfire. Now physicists are using it to formulate the problem of consciousness in concrete mathematical terms for the first time.

There’s a quiet revolution underway in theoretical physics. For as long as the discipline has existed, physicists have been reluctant to discuss consciousness, considering it a topic for quacks and charlatans. Indeed, the mere mention of the ‘c’ word could ruin careers.

That’s finally beginning to change thanks to a fundamentally new way of thinking about consciousness that is spreading like wildfire through the theoretical physics community. And while the problem of consciousness is far from being solved, it is finally being formulated mathematically as a set of problems that researchers can understand, explore and discuss.

Today, Max Tegmark, a theoretical physicist at the Massachusetts Institute of Technology in Cambridge, sets out the fundamental problems that this new way of thinking raises. He shows how these problems can be formulated in terms of quantum mechanics and information theory. And he explains how thinking about consciousness in this way leads to precise questions about the nature of reality that the scientific process of experiment might help to tease apart.

Tegmark’s approach is to think of consciousness as a state of matter, like a solid, a liquid or a gas. “I conjecture that consciousness can be understood as yet another state of matter. Just as there are many types of liquids, there are many types of consciousness,” he says.

He goes on to show how the particular properties of consciousness might arise from the physical laws that govern our universe. And he explains how these properties allow physicists to reason about the conditions under which consciousness arises and how we might exploit it to better understand why the world around us appears as it does.

Interestingly, the new approach to consciousness has come from outside the physics community, principally from neuroscientists such as Giulio Tononi at the University of Wisconsin in Madison.

In 2008, Tononi proposed that a system demonstrating consciousness must have two specific traits. First, the system must be able to store and process large amounts of information. In other words consciousness is essentially a phenomenon of information.

And second, this information must be integrated in a unified whole so that it is impossible to divide into independent parts. That reflects the experience that each instance of consciousness is a unified whole that cannot be decomposed into separate components.

Both of these traits can be specified mathematically allowing physicists like Tegmark to reason about them for the first time. He begins by outlining the basic properties that a conscious system must have.

Given that it is a phenomenon of information, a conscious system must be able to store in a memory and retrieve it efficiently.

It must also be able to to process this data, like a computer but one that is much more flexible and powerful than the silicon-based devices we are familiar with.

Tegmark borrows the term computronium to describe matter that can do this and cites other work showing that today’s computers underperform the theoretical limits of computing by some 38 orders of magnitude.

Clearly, there is so much room for improvement that allows for the performance of conscious systems. ==> CONTINUE READING

See All Episodes